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• We present a new continuous tracking-error model-based predictive control algorithm for mobile robots.
• Comparisons are made to our previous work with discrete design.
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a b s t r a c t

Model-based predictive control approaches can be successfully applied to the trajectory tracking of
wheeled mobile-robot applications if the process nonlinearity is considered, if real-time performance is
achieved and if assumptionsmade in the control-law design aremetwhen applied to a particular process.
In this paper, continuous tracking-error model-based predictive control is presented. The controller’s
optimal actions are obtained from an explicit solution of the optimization criteria, which enables fast
real-time applications. Due to its design in continuous time, its usage is not limited to the uniform
sampling restrictions of a host computer, as is usually the case in discrete time design. Therefore, better
performance is obtained in applications with non-uniform sampling, which is natural in many situations
due to imperfect sensors, mismatched clocks, nondeterministic control delays or because of the unknown
time of the pre-processing. The controller-design parameters are insensitive to the sampling time period,
which contributes to simpler applications and greater robustness of the controller.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wheeled-robot motion control is important in practical appli-
cations as well as being an important research problem. Different
control laws were proposed for driving mobile robots with differ-
ential kinematics [1]. The motion control of such robots can be
carried out as a point stabilization [2,3] or as trajectory tracking
[4–7]. Trajectory tracking appears to be more natural for mobile-
robot drives with nonholonomic constraints.

A very commonand frequently used nonlinear controller design
is that which first appears in [7–9]. It is designed in a Lyapunov
frame and guarantee asymptotic stability. This controller structure
has motivated many researchers to include their modifications,
such as an adaptive upgrade in [10], a fuzzy extension in [11],
an input–output linearization in [12], a saturation-constraint feed-
back in [13], a combined control and observer design in [14], and
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many others. In [7] a dynamic feedback linearization for a flat
system output is described, which results in a more robust design
and does not require any orientation measurements. In [15] a
Lyapunov analysis is used to design a nonlinear control law that
is asymptotically stable and overcomes the common discontinuity
problem in the orientation error. Control of many commercial
robots can be done considering kinematicmodel only because they
already have internal control handling robot dynamics. If this is not
the case a dynamic compensator [5] should be implemented before
applying kinematic control.

Approaches of nonlinear MPC (Model Predictive Control) for
tracking in mobile robots are rare [16], with the earliest papers
being [17,18] and [19]. In these applications the computational
burden was prohibitive in fast, real-time applications. Later, sev-
eral real-time implementations followed in [16,20] and [21] where
optimized numeric search approaches are applied to solve theMPC
optimization problem. An analytical solution of the MPC problem
formobile robots is proposed in [22],which enables fast and simple
real-time implementations. Several model predictive approaches
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apply linearization to obtain computationally more efficient so-
lutions that are valid near the operating point. If environment
disturbances are high a nonlinear predictive approaches [19] or
robust solutions should be used. Robust predictive approachwhich
can handle several disturbances that usually can appear in out-
door applications is suggested by [23]. In these model predictive
approaches a discretization of the nonlinear or linearized system
model is required, resulting in a discrete control law. However,
the discretization to the required periodic sampling is only ap-
proximate, especially if the period of the sampling is not exact.
Therefore, it introduces some systematic error in the control-law
calculation. Discrete control approaches used on continuous-time
plant lose the information of intersample operation of continuous
process [24]. A study how variable sampling period due to random
delays influences stability of mobile robot control is performed in
[25]. Control of nonlinear system under variable sampling have
been investigated in [26] applying a fuzzy control approach.

In this work a continuous model-based predictive control is
proposed. The control law has a similar structure to the discrete
MPC in [22] and differs mainly in terms of a design that is made
in continuous space. The main novelties of the proposed approach,
with respect to our previously published approach [22], are as fol-
lows. The predictive control law is designed in a continuous space,
which means that discretization of the tracking-error dynamics
is not needed. Better, or at least equal, trajectory tracking results
are obtained because the error due to the discretization is not
present in the control law. A greater robustness of the control-
law design parameters, such as the time horizon and the desired
control law dynamics, to sampling-time variations is obtained. The
design parameters are insensitive to the used sample time, which
is not the casewith the discrete design. Thismeans that continuous
model predictive control can be realized in non-equidistant sam-
pling cases where better trajectory-tracking results are obtained
compared to the results of discrete model predictive controls.

The rest of the paper is organized as follows. In Section 2 the
continuous model predictive control law is derived for a mobile
robot with differential kinematics. Comparisons of the simulation
results between the proposed continuousmodel predictive control
and the discrete model predictive control are given in Section 3.
The experimental results and comparisons are presented in Sec-
tion 4, and the conclusions are drawn at the end.

2. Trajectory-tracking problem

In this section a continuous tracking-errormodel-based control
algorithm is explained, which is applied to the mobile robot with
differential drive kinematics as follows

q̇(t) =

[cos θ (t) 0
sin θ (t) 0

0 1

][
v(t)
ω(t)

]
(1)

where v(t) andω(t) are the tangential and angular velocities of the
mobile robot, q is [x, y, θ] and q̇ is their derivative. Obtained control
results in the following can be extrapolated to other mobile plat-
forms such as very often used Ackermann type. Model (1) can be
applied to Ackermann using transformations v(t) = vs(t) cosα(t)
and ω(t) =

vs(t)
d sinα(t) where α is the steering angle, vs velocity

of the steering wheel and d the distance among the steering and
the rear wheels [27].

In the trajectory-tracking problem the control task is to follow
the given reference trajectory. This can be solved by a nonlinear
feedback or a smooth linear feedback designed for a linearized sys-
tem around the trajectory ([2,28–30] and [9]). To achieve asymp-
totic stability of the nonholonomic system (1) a time-varying feed-
back is needed [31].

The reference trajectory xr (t), yr (t) is achievable for a differen-
tial drive if it is twice differentiable and does not come to a stop

(ẋ2r (t) + ẏ2r (t) ̸=0). If the latter is true, the feedforward controls
can be calculated from the reference trajectory. The tangential
feedforward velocity vr (t) is obtained by

vr (t) =
(
ẋ2r (t) + ẏ2r (t)

) 1
2 (2)

and the angular feedforward velocity ωr (t) is obtained from time
derivative of the tangent orientation of the reference trajectory
θr (t) = arctan ẏr (t)

ẋr (t)
as follows

ωr (t) =
ẋr (t)ÿr (t) − ẏr (t)ẍr (t)

ẋ2r (t) + ẏ2r (t)
. (3)

The feedforward control action is only applicable if the robot is
perfectly described by the kinematic model and if no disturbances
and initial posture errors are present. In practice, the feedforward
control action is supplemented by a suitable feedback control law.

2.1. State tracking-error kinematics

The state trajectory tracking error e(t) defined in the robot
coordinate frame is obtained using

e(t) =

[ex(t)
ey(t)
eθ (t)

]
=

[ cos θ (t) sin θ (t) 0
− sin θ (t) cos θ (t) 0

0 0 1

]
(qr (t) − q(t)) . (4)

From the kinematics (1) state tracking error (4) and supposing
that the imaginary reference robot has the same kinematics (1), the
following model results

ė(t) =

[cos eθ (t) 0
sin eθ (t) 0

0 1

][
vr (t)
ωr (t)

]
+

[
−1 ey(t)
0 −ex(t)
0 −1

]
u(t) (5)

where u(t) = [v(t) ω(t)]T stands for the control vector. Robot
control is obtained by combining the feedforward and feedback
control actions

u(t) = uf (t) + ub(t) (6)

where uf (t) = [vr (t) cos eθ (t) ωr (t)]T is the feedforward part and
ub(t) = [vb(t) ωb(t)]T is the feedback part.

By inserting relation (6) into Eq. (5), the nonlinear state
tracking-error kinematics is obtained as follows

ė(t) =

⎡⎢⎣ 0 ωr (t) 0

−ωr (t) 0 vr (t)
sin eθ (t)
eθ (t)

0 0 0

⎤⎥⎦ e

+

[
−1 ey(t)
0 −ex(t)
0 −1

]
ub(t). (7)

For the purposes of continuous model-predictive control a lin-
earization of (7) around the reference trajectory (desired operating
point: ex(t) = ey(t) = eθ (t) = 0, vb(t) = ωb(t) = 0) is performed
to obtain a linear continuous model

ė(t) =

[ 0 ωr (t) 0
−ωr (t) 0 vr (t)

0 0 0

]
e +

[
−1 0
0 0
0 −1

]
ub(t) (8)

whose compact form is defined as follows ė(t) = A(t)e(t)+ Bub(t).
This compact linear form will be used in the subsequent text to
derive explicit control law. Note, however that linearmodel is only
valid in vicinity of the operating point (zero error in (8)) and the
control performance using linear model may not be as expected
in case of large control errors. Here controller that forces error
towards zero is designed therefore the linear model is acceptable
choice.
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2.1.1. Prediction of errors
The prediction of a certain error component is obtained with a

Taylor series expansion as follows

ei(t + τ ) = ei(t) +

ne∑
k=1

e(k)i (t)
τ k

k!
, i = 1, . . . , n, (9)

where e(k)i (t) defines the kth time derivative of the variable ei(t) as
follows

e(k)i (t) =
dkei(t)
dtk

(10)

and ne defines the order of the prediction, i.e., the order of the
derivatives in the series expansion and τ defines the time of the
prediction. The error of this approximation depends on the order
ne and the time of the prediction τ .

Eq. (9) is then rewritten in the form as follows

ei(t + τ ) = ei(t) +

[
τ

τ 2

2!
· · ·

τ ne

ne!

] [
e(1)i (t) e(2)i (t) · · · e(ne)i (t)

]T
.

(11)

The kth derivative of the error vector is then similarly, taking
into account Eq. (8), written in the following form

e(k)(t) = Ane (t)e(t) +
[
Ane−1(t)B Ane−2(t)B · · · B

]
u∗

b(t) (12)

and u∗

b(t) stands for u
∗

b(t) =

[
ub(t)T u(1)

b (t)T . . . u(ne−1)
b (t)T

]T
and

has the dimension of m · ne×1 and e(t) has the dimension n×1,
wherem stands for the input-vector dimension.

By taking into account Eqs. (9) and (12), the prediction of all the
error variables will be given as follows

e(t + τ ) = e(t) + Te

⎡⎢⎢⎢⎣
e(1)

e(2)
...

e(ne)

⎤⎥⎥⎥⎦ , (13)

where Te stands for the following n×n · ne matrix

Te =

[
τ In

τ 2

2!
In · · ·

τ ne

ne!
In

]
(14)

and In stands for the n×n identity matrix.
Eq. (13) can be further, by taking into account Eq. (12), devel-

oped as follows

e(t + τ ) = e(t) + TeF (t)e(t) + TeH(t)u∗

b(t), (15)

where F (t) stands for the matrix of dimension n · ne×n, defined as

F (t) =
[
A(t) A2(t) · · · Ane (t)

]T
(16)

and H(t) stands for the matrix of dimension n · ne×m · ne, defined
as

H(t) =

⎡⎢⎢⎢⎢⎣
B 0 0 0

A(t)B B
...

...
...

...
. . .

...

Ane−1(t)B Ane−2(t)B · · · B

⎤⎥⎥⎥⎥⎦ . (17)

2.2. The reference-error model

The dynamics of the reference trajectory tracking is involved
with the reference-error model, which is defined as follows

ėr (t) = Are(t) (18)

where Ar stands for the reference-error transition matrix defined
by Ar = ar · In, where ar < 0. This means that the nature of
the trajectory tracking is defined by matrix Ar with the dimension
n×n and diagonal elements, which defines the dynamics of the
reference trajectory. At the current time instant er (t) = e(t), while
the future reference-error prediction must exponentially decrease
to zero. This leads to a prediction of the reference error for the time
τ ahead (similarly as in (15)), which is defined as

er (t + τ ) = e(t) + TeFre(t), (19)

where Fr stands for

Fr =
[
Ar A2

r · · · Ane
r

]T
. (20)

2.3. The control law

The criterion function that is optimized to obtain the control
law is now written in the matrix form as follows

J =

∫ Th

0

[
εTQ ε + ∆uT

b (τ )R∆ub(τ )
]
dτ (21)

where ∆ub(τ ) stands for ∆ub(τ ) = ub(t + τ ) − ub(t) and ε stands
for ε = er (t + τ ) − e(t + τ ). The prediction of the control variable
ub(t + τ ) is defined as follows

ub(t + τ ) = ub(t) + Tuu∗

b (22)

where Tu is defined as

Tu =

[
τ Im

τ 2

2!
Im · · ·

τ ne

ne!
Im

]
(23)

and Im stands for the m×m identity matrix. The matrix Q defines
the matrix of dimension n×n for the weighting of the tracking
errors, R stands for the m×m matrix to weight the change of the
input variable u(t), and Th is prediction horizon time where the
criterion is calculated.

Taking into account Eqs. (15) and (19), integrating the criterion
function and then calculating the derivative according to u∗

b the
following is obtained
dJ
du∗

b
=−HTTQ Fre + HTTQ Fe + HTT T

Q Fe

−HTTQ Fre + 2HTTQHu∗

b + 2TRu∗

b

(24)

where the shorter notation H = H(t), F = F (t) is used and where
TQ and TR are the following constant positive definite matrices of
dimensions n · ne×n · ne and m · ne×m · ne

TQ =

∫ Th

0
TeTQTedτ (25)

TR =

∫ Th

0
TuTRTudτ (26)

where Te is defined as given in Eq. (14) and Tu is given in Eq. (23).
The matrices TQ and TR are symmetric and constant matrices

that are independent of time.
A necessary condition the optimality is given by third Euler–

Lagrangove equation as follows
∂J
∂u∗

b
= 0, (27)

and the sufficient condition for the optimal solution is given by the
Legendre–Clebsch equation as follows

∂2J

∂u∗

b
2 = 2TR ≥ 0, (28)

which follows from the fact that the matrix TR is positive definite.
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The optimal control law is then given as follows

u∗

b(t) =
(
H(t)TTQH(t) + TR

)−1
H(t)TTQ (Fr − F (t)) e(t). (29)

The optimal control variable ub(t) is given by the firstm rows of the
vector u∗

b(t).

2.4. The order of the control variable

The control law is given by the control variable u∗

b(t), which
has the dimension m · ne×1. This means that the expansion of the
control variable u(t + τ ) is of the same order ne as the expansion
of the errors e(t + τ ). Or, the series expansion of the control
variable is given by ne − 1 derivatives. This could lead to the
singularity problem in the case of Eq. (29), where the inverse of the
expression H(t)TTQH(t) + TR is calculated. This problem is solved
by introducing the control-variable order nu. This means that the
Taylor series expansion of the control variable is limited to nu

derivatives as follows: u∗

b(t) =

[
ub(t)T u(1)

b (t)T . . . u(nu)
b (t)T

]T
and

has the dimension ofm · (nu + 1)×1. This also leads to the change
of the matrix H(t), which is now of dimension n · ne×m · (nu + 1),
defined as

H(t) =

⎡⎢⎢⎢⎢⎣
B 0 0 0

AB B
...

...
...

...
. . .

...

Ane (t)B Ane−1(t)B · · · Ane−nu (t)B

⎤⎥⎥⎥⎥⎦ (30)

and the change of Tu, which is now defined as follows

Tu =

[
τ Im

τ 2

2!
Im · · ·

τ nu

nu!
Im

]
(31)

and Im stands for the m×m identity matrix. This also means that
the matrix TR now has dimension m · (nu + 1)×m · (nu + 1). The
control variable order nu should be smaller than the error variable
order ne.

3. Validation of the continuous MPC performance

In the following the performance and robustness of the pro-
posed control law is validated by various simulations, considering
the periodic and aperiodic sampling intervals, the noise in the
sampling-period duration and the nondeterministic control delay.

The obtained results are compared to the discrete MPC (DMPC)
realization [22], with themain purpose being to illustrate in which
situations the use of the proposed continuous MPC (CMPC) is
beneficial over the discrete design and also when it is not.

The reference trajectory for all the experiments is defined by

xr (t) = 1.1 + 0.7 sin
(
2π t
30

)
, yr (t) = 0.9 + 0.7 sin

(
4π t
30

)
where t ∈ [0, 30] s. The robot starts with an initial state error
according to the reference trajectory, its starting pose is q =

[1.1 0.8 0]T . The robot velocities and wheel accelerations are
limited as follows: vMAX = 1 m/s, ωMAX = 15 and aMAX = 3 m/s2.

The design parameters for the continuous MPC are as follows:

Q =

[2 0 0
0 10 0
0 0 0.4

]
, R =

[
0.001 0

0 0.001

]
,

Ar =

[
−13 0 0
0 −13 0
0 0 −13

]
.

The order of the prediction is ne = 3, the order of the control
variable is nu = 2, the prediction horizon time Th = 4Ts and the
diagonal element in the reference trajectory matrix is ar = −13.

Fig. 1. Trajectory tracking of continuous (thin) and discrete (thick) model-
predictive controller under ideal sampling. First figure: robot path (—), reference
path (- -), second figure: tangential velocity v (- -) and angular velocity ω (—) .

Additional parameters needed for the discrete MPC algorithm’s
realization that give a comparable performance to the continuous
realization are as follows

Adr = ear Ts
[1 0 0
0 1 0
0 0 1

]
=

[0.65 0 0
0 0.65 0
0 0 0.65

]
where the control horizon h = 4 and the sampling period of the
control loop Ts = 0.033 s.

3.1. Performance simulation under ideal conditions

In this simulation we suppose that the process inputs are
changed at regular sampling intervals Ts and no noise is present
in the controlled system.

The obtained results (trajectory tracking and velocity inputs) of
the continuous MPC and the discrete MPC realization are shown in
Fig. 1. Both have very similar performance, because of the periodic
sampling and the appropriate sampling period selection.

3.2. Robustness of the design parameters to the sampling period

An important advantage of the continuous control approach is
the insensitivity of the design parameters to the sampling time. In
the discrete case the design parameters of the control law depend
on the sampling time. This, however, is not the case in the contin-
uous approach. To clarify this claim the simulated sampling period
is now changed to Ts = 0.066 s, which is two times longer than
in the previous example (Fig. 1). The process inputs are changed at
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Fig. 2. Trajectory tracking of continuous (thin) and discrete (thick) model-
predictive controller at double sampling time (Ts = 0.066). First figure: robot
path (—), reference path (- -), second figure: tangential velocity v (- -) and angular
velocity ω (—) .

regular sampling intervals Ts = 0.066 s, but the design parameters
(Ar , Q , R, Th) for the control law remain the same as in the previous
example, so they are valid for a 0.033 s sampling period.

The results of the continuous and discrete MPC are shown in
Fig. 2. The results of continuous realization are very much the
same as in Section 3.1, while the performance of the discrete case
is worse. The CMPC is derived in continuous space and therefore
the discretization of the continuous system model is not needed,
as it is in the discrete-case design. Consequentially, the design
parameters of the CMPC are also not dependent on the sampling
period Ts. Therefore, the CMPC is more robust to the sampling-
period deviations (aperiodic sampling). And also in the case of
the periodic sampling, the tuning of the controller parameters
is not required if sampling period is changed. While DMPC con-
troller parameters need to be tuned again when sampling time is
changed.

3.3. Performance under variable sampling

Usually, the elements of the control loop (sensors, actuators,
controller) are event-driven and ideal periodic sampling is rarely
available [32]. However, the statistically expected value of the
sampling period Ts must fulfil the criterion 0.2 ≤ ωTs ≤ 0.6, as
stated in [33], where ω is the closed-loop natural frequency.

The true sampling time TsTrue is therefore nondeterministic,
which in this simulation is modelled by the normal probability

Fig. 3. Trajectory tracking of continuous (thin) and discrete (thick) model-
predictive controller at variable sampling. First figure: robot path (—), reference
path (- -), second figure: tangential velocity v (- -) and angular velocity ω (—) .

density function

p (TsTrue) =
1√

2πσ 2
s

e−
1
2

(
(TsTrue−Ts)

σs

)2

where Ts = 0.033 s is the mean value and σs = 0.01 s is the
standard deviation. So, the process inputs are changed at time
intervals TsTrue, which is nondeterministic.

The results of the continuous MPC and discrete MPC are shown
in Fig. 3. Due to the sample-time variation during the simulation
(see Fig. 4), the noise in the control signals from the discrete
MPC appears. This happens because the discrete control is not
performed for regular periodic time samples and the error due to
the discretization is then propagated over the whole control-law
algorithm.

3.4. Performance under variable sampling and control delay

In practice, a control delay is present, which can again be
modelled as a nondeterministic process. The sensor processing,
controller and actuators are usually event-driven parts of the
closed-loop system. So, the sensor information for the control law
starts processing as soon as the rawdata from the physical sensor is
available, which can be assumed to be at regular sampling intervals
Ts or at nondeterministic intervals TsTrue (usually with quite a low
uncertainty).

However, the raw sensor data need to be processed (e.g., SLAM
in mobile robotics) to produce the required sensor information for
the control part. This sensor processing time is time-varying and
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Fig. 4. Sample-time variation during the simulation.

Fig. 5. Variable sampling demonstration. Raw sensor data are obtained at sample
intervals TsTrue , which triggers the processing algorithms to extract the required
control information from the raw sensor data. The latter triggers the control algo-
rithms and finally the control variables are communicated to the process actuators.
All the mentioned algorithms and the communication cause a control delay Td ,
which is usually nondeterministic aswell as instants of the control inputs (actuation
period Ta).

contributes to the overall time delay. The control algorithm starts
when the processed sensor information is available and calculates
the process input after some time delay, which is again time-
varying. In mobile robotics the controller can typically have many
tasks with different complexities such as path planning, obstacle
avoidance, reference tracking and not all of them are always active.
Finally, after the process input is calculated, the actuator produces
the required input to the process, where some communication
delay may be present. The overall control delay Td is therefore
nondeterministic as illustrated in Fig. 5.

The results of the continuous and discrete MPC realization
are shown in Fig. 6. From the obtained results in Fig. 6 better
performance is observed for the continuous MPC, where less noise
appears in the control signal. The control delay disturbs both
control designs, which is seen from the noise in the control signals.
However, due to the variable actuation period Ta the performance
of the continuous controller realization is better as it has a faster
response and lower noise at the control inputs. The variable period
Ta is shown in Fig. 7 and results from a nondeterministic sensor
sampling and control delay.

Fig. 6. Trajectory tracking of continuous (thin) and discrete (thick) model-
predictive controller at variable sampling and control delay. First figure: robot
path (—), reference path (- -), second figure: tangential velocity v (- -) and angular
velocity ω (—) .

Fig. 7. Sample time of actuation Ta varies due to the nondeterministic sensor
sampling and the nondeterministic process delay.

In general, the noise at the control inputs is propagated from
the process output noise and also from the noise in the sampling
period and control delay. The faster the controller dynamics, the
larger the control noise is. However, from Fig. 6 a faster response
of continuous MPC is observed at a lower control noise than in
discrete MPC.

Similar conclusions can also bemade for the different reference
trajectories. Example of a discontinues reference trajectory, which
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Fig. 8. Trajectory tracking with the continuous model-predictive controller at
variable sampling and control delay. First figure: robot path (—), reference path (- -),
second figure: tangential velocity v (- -) and angular velocity ω (—) .

are usually the output of path planing approaches [34], is given in
Fig. 8.

3.5. Quality index comparison

A comparison of the performance for the simulated scenarios
from Sections 3.1–3.4 is given in Table 1. The performance is
evaluated by the root-sum-square of the position error (RSSx =√∑

e2x ,RSSy =

√∑
e2y) and the orientation error (RSSθ =

√∑
e2θ ),

by the norm of the root-sum-square of the position errors (NSS =√
(RSS2x + RSS2y )) from the reference trajectory and by the standard

deviations of the control inputs (σv , σω).
In first line of Table 1 an ideal situation is compared (Section 3.1)

from which it is clear that there is no noticeable difference in
performance between the continuous (CMPC) and the discrete
(DMPC) realizations.

In the second line of Table 1 the robustness of the control design
parameters to the sampling period is tested (Section 3.2). The pa-
rameters optimized for the sampling period Ts = 0.033 s are used
on the simulation with the sampling period Ts = 0.066 s. It is clear
that the performance (pose tracking and control signals) of the
discrete realization performsmuchworse than the continuous one.
It has to be noted that the RSS andNSS values of the second line and
the first line could not be compared due to the different number of
sampling instants for the same duration of the simulation.

In the third line of Table 1 a variable sampling is simulated
(Section 3.3). The main difference can be observed in the larger

Fig. 9. Small mobile robot (left) and Pioneer 3AT robot (right) used in experiments.

control-inputs noise standard deviation of the DMPC, while the
CMPC performs similarly to the in ideal case. In the DMPC the noise
in the control signals is caused by the noise in the sampling time,
where the sampling instants are not periodic. Due to the closed-
loop operation the noise in the sampling time mostly affects the
control inputs, while the tracking errors are similar for the CMPC
and DMPC.

In the fourth line of Table 1 a variable sampling and variable
control delay is simulated. The delay affects the performance of
both control designs. The variable delay also contributes to a larger
variance of the time between the successive instants of the control-
inputs update and, therefore increases the control-inputs noise in
the DMPC.

4. Experimental results

In the experiments the proposed continuous model-based
predictive control is compared to the discrete predictive con-
trol presented in [22]. Two mobile robot platforms are used in
experiments, a smaller two-wheeled mobile robot and four-
wheeled Pioneer 3AT mobile robot (see Fig. 9). Both robot motion
can be approximated by differential kinematics but with different
parameters. As already explained in Section 2 (comment of Eq. (1))
the controller can also be applied to Ackermann robot type using
simple velocities transformations. This covers majority of wheeled
mobile robots used in practice.

The small robot is designed for robot soccer competitionswhere
speed, robustness and accuracy are needed. It fits in a cube with a
7.5-cm side and weighs 0.5 kg. The robot pose is estimated with
an image sensor and a computer-vision algorithm running at Ts =

0.033 s sampling. The maximum allowed tangential velocity and
angular velocity were vMAX = 1 m/s and ωMAX = 15 rad/s,
while the maximum allowed tangential wheel acceleration was
aMAX = 3 m/s2. Pioneer 3AT is all-purpose outdoor mobile robot
usedmainly for research. It uses laser range finder runningwith 10
Hz (Ts = 0.1 s) for its localization. Maximum allowed velocities are
set to vMAX = 0.8 m/s and ωMAX = 5 rad/s.

The optimal continuous feedback control law is derived in (29)
and by taking the first two rows of (HTTQH + TR)−1HTTQ (Fr − F )
the gain matrix Kc(t) is defined for the applied control as follows

ub(t) = Kc(t)ē(t), (32)

where ē(t) is the undelayed system-tracking error, which is not
available in practice due to the different sources of system delay.
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Table 1
Performance of continuous and discrete control for the simulated scenarios evaluated by the root-sum-square of the
pose errors and the standard deviations of the controls.

Experiment Method RSSx RSSy RSSθ NSS σv σω

[m] [m] [rad] [m] [m/s] [rad/s]

Correct sampling CMPC 0.033 0.024 0.55 0.04 0.002 0.008
Ts = 0.033 DMPC 0.073 0.017 1.24 0.07 0.002 0.008

Double sampling CMPC 0.021 0.025 0.24 0.035 0.003 0.016
Ts = 0.066 DMPC 0.068 0.030 1.07 0.075 0.005 0.018

Variable sampling CMPC 0.110 0.210 93.6 0.23 0.002 0.009
TsTrue DMPC 0.123 0.214 94.9 0.25 0.059 0.064

variable TsTrue CMPC 0.112 0.233 85.9 0.26 0.024 0.052
and var. delay DMPC 0.130 0.269 93.2 0.30 0.086 0.099

The main delay source of the smaller robot is an image-based sen-
sor delay where the current camera image needs to be precessed
to obtain the robot pose. The other sources causing an additional
system delay are: the control algorithm computational time and
the communication delay. The overall delay is nondeterministic,
where TD = 2Ts is its estimated mean value. Delay of the Pioneer
robot is less than Ts and is not compensated in the control.

The undelayed tracking error ē(t) can be estimated from the
delayed system output ed(t) = e(t − Td) and the simulated system
outputs em(t) and em(t − Td) using the Smith predictor scheme as
follows

ē(t) = ed(t) + em(t) − em(t − Td), (33)

which in the frequency domain reads

ē(s) = ed(s) + (sI3 − A)−1Bu(s) − (sI3 − A)−1Be−sTdu(s), (34)

inserting (34) into the control law(32) defines the control input for
the delayed system as follows

ub(s) = Kc ē(s)
= Kced(s) + Kc(sI3 − A)−1B(I2 − e−sTd)ub(s)

(35)

where Ij is the identity matrix of dimension j. The optimal con-
troller transfer function for the delayed system then reads

C(s) =
ub(s)
yd(s)

=
(
I2 − Kc(sI3 − A)−1B(I2 − e−sTd)

)−1
Kc . (36)

The same reference-trajectory and control-design parameters
as selected in simulation section are used for the smaller robot.
While the reference trajectory of the Pioneer robot is xr (t) =

1.4 sin
( 2π t

50

)
, yr (t) = 1.4 sin

( 4π t
50

)
and design parameters for

CMPC are: Th = 4Ts

Q =

[1 0 0
0 5 0
0 0 0.2

]
, R =

[
0.3 0
0 0.3

]
,

Ar =

[
−3 0 0
0 −3 0
0 0 −3

]
.

The control parameters for both control laws (CMPC and DMPC)
are selected equivalently to have the same performance.

The trajectory-tracking results (for the small robot), ob-
tained using the proposed continuous model-predictive controller
(CMPC) and comparison to discrete model-predictive controller
(DMPC), are shown in Fig. 10. The trajectory-tracking results of
both approaches are of approximately similar quality. Both result
in good tracking in the presence of the system delay and noisy
sensor data, with a standard deviation of approximately 2 mm
for position and 1◦ for orientation. During the experiments sensor
disturbances, such as the wrong pose estimation (outliers; 2% of
all measurements) and some camera distortion (perspective and
radial distortion) are also present.

Fig. 10. Trajectory tracking experiment of the small robot with the CMPC (thin)
and DMPC (thick) at variable sampling and control delay. First figure: robot path
(—), reference path (- -), second figure: tangential velocity v (- -) and angular
velocity ω (—).

A closer comparison of trajectories in Fig. 10 reveals slightly
better tracking results for the CMPC during the initial transition.
This is also seen in the comparison of the quality indexes in the first
row of table Table 2. Themain difference between both approaches
is observed by comparing velocity inputs. A much higher jitter in
the tangential and angular velocity is present in the discretemodel
predictive control, which is also seen from the standard deviations
of the control variables in the first row of table Table 2. The
latter statement was observed in experiment as a much smoother
motion of the robot platform in the case of the CMPC.

More detailed validation is done for the Pioneer robot using
constant sampling, double sampling and variable sampling as fol-
lows in Figs. 11–13 and in Table 2. From figures and table of
performances the same conclusions can be drawn as in Section 3.
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Table 2
Performance of CMPC and DMPC for experiments on real robots evaluated by the root-sum-square of the pose errors
and the standard deviations of the controls.

Experiment Method RSSx RSSy RSSθ NSS σv σω

[m] [m] [rad] [m] [m/s] [rad/s]

Small robot
sampling CMPC 0.31 0.83 3.27 0.88 0.032 0.53
Ts = 0.033 DMPC 0.32 0.90 3.88 0.95 0.055 0.78

Pioneer robot
CMPC 0.66 1.24 1.14 1.41 0.039 0.038

Ts = 0.1 DMPC 0.99 1.50 1.11 0.95 0.051 0.105

Pioneer robot
CMPC 0.53 0.97 1.04 1.11 0.027 0.036

Ts = 0.2 DMPC 8.35 5.88 4.46 10.21 0.315 1.383

Pioneer robot
CMPC 0.61 1.1 1.01 1.26 0.041 0.042

variable Ts DMPC 3.10 4.67 3.48 5.61 0.258 0.812

Fig. 11. Trajectory tracking experiment of Pioneer robot with the CMPC (thin)
and DMPC (thick) at regular sampling time Ts = 0.1 s. First figure: robot path
(—), reference path (- -), second figure: tangential velocity v (- -) and angular
velocity ω (—).

Continuous and discrete approaches are equivalent at regular sam-
pling time where actual sampling time is the same as the one
selected in the tuning phase (see Fig. 11). If sampling time is
changed (in Fig. 12 is doubled so Ts = 0.2 s) and the control
design parameters are not adapted (they are valid for Ts = 0.1 s)
then the performance of DMPC becomes worse while the CMPC
performance is not affectednoticeably. Similarly if sampling time is
changing randomly then the performance of DMPC becomesworse
while the CMPC is insensitive to the sampling time period variation
(in Fig. 13 sample is lost with 50% probability).

Fig. 12. Trajectory tracking experiment of Pioneer robot with the CMPC (thin) and
DMPC (thick) at double sampling time (Ts = 0.2 s) and control design parameters
tuned to Ts = 0.1 s. First figure: robot path (—), reference path (- -), second figure:
tangential velocity v (- -) and angular velocity ω (—).

From the above comparisons the CMPC approach gives better
results, which is to be expected because of the varying sampling
times, mostly due to the variable control delay. The CMPC algo-
rithm is derived in continuous space and therefore the discretiza-
tion of the continuous system tracking model (7) is not needed, as
it is in the case for the DMPC. This statement is also consistent with
the simulation analysis made.

In the DMPC the tracking-error model discretization according
to the desired sample time is made. Because the actual sampling
time instants are nondeterministic, the error due to the discretiza-
tion is then propagated over the whole control-law algorithm,
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Fig. 13. Trajectory tracking experiment of Pioneer robot with the CMPC (thin) and
DMPC (thick) at variable sampling time where sample is lost with 50% probability.
First figure: robot path (—), reference path (- -), second figure: tangential velocity v

(- -) and angular velocity ω (—).

while in the CMPC the continuous control signal is only evaluated
in actual discrete time samples at the end of each control-loop
iteration before sending the velocity commands to the robot
platform.

5. Conclusion

The continuous model-predictive trajectory-tracking control of
a mobile robot is presented in this paper. The proposed control
law minimizes the quadratic cost function consisting of tracking
errors and control effort as is also the case in the discrete version.
The solution to the control is derived analytically, which enables
fast, real-time implementations. The proposed continuous model-
predictive control was validated by simulation and also on a real
mobile robot.

Continuous model-predictive control design has, in ideal sit-
uations, similar performance to the equivalent discrete model-
predictive control. However, in general situations the assumption
of having a uniform sampling time and a deterministic control
delay is not always realistic. It has been shown that a continuous
design gives better results in cases where the sampling-time in-
stants are not deterministically periodic. An important advantage
of the proposed continuous model predictive control is also the
better robustness of its control-law design parameters according
to the sampling period. The change in the sampling period does
not affect the control quality.
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